
Usage of Functions
Functions, as do subprograms, give you the possibility to receive data, to change it and to give the results to the
calling module. The advantage of using functions over subprograms is that function calls can be used directly in
statements and expressions without the need for additional temporary variables.

Normally, depending on the parameters that are given to the function, the result is produced in the function and is
returned to the calling object. If other values are to be returned to the calling module, this can be done by using the
parameters (see the section Subprogram).

Once the function code has been completely executed, control is given back to the calling object and the program
continues with the statement that comes after the function call.

For more information about the Natural object type "Function", see the section Object Types in the Natural
Programming Guide.

Advantage of Function Calls
The following two examples show the difference between using function calls and subprograms.

Example using Function Calls:

Program Object:

/* Natural program using a function call
INCLUDE C#ADD
WRITE #ADD(< 2,3 >) /* function call; no temporary variable necessary
END

Function Object:

/* Natural function definition
DEFINE FUNCTION #ADD
 RETURNS (I4) BY VALUE
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE

 #ADD := #SUMMAND1 + #SUMMAND2
END-FUNCTION
END

Copycode Object (e.g.: "C#ADD"):

/* Natural copycode containing prototype
DEFINE PROTOTYPE #ADD
 RETURNS (I4)
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE
END-PROTOTYPE

1Copyright Software AG 2003

Usage of Functions<Untitled>

If you want to achieve the same functionality by using a subprogram, you must use temporary variables.

Example using a Subprogram:

Program Object:

/* Natural program using a subprogram
DEFINE DATA LOCAL
1 #RESULT (I4) INIT <0> /* temporary variable
END-DEFINE

CALLNAT ’N#ADD’ USING #RESULT 2 3 /* result is stored into #RESULT
WRITE #RESULT /* print out the result of the subprogram
END

Subprogram Object (e.g.: "N#ADD"):

/* Natural program using a subprogram
DEFINE DATA PARAMETER
1 #RETURN (I4) BY VALUE RESULT
1 #SUMMAND1 (I4) BY VALUE
1 #SUMMAND2 (I4) BY VALUE
END-DEFINE

#RETURN := #SUMMAND1 + #SUMMAND2
END

Function Definition
The function definition contains the Natural code to be executed when the function is called. As with subprograms,
you need to create an object of type "Function" which contains the function definition.

The function call itself can be in any object type which contains executable code. It cannot appear in class objects,
for example.

To be able to compile function calls, Natural needs information about the type of the return value. This information
is then made available to the compiler in the prototype definition. You can also include the definition of the
parameter to be passed back, which is then checked at compile time.

Since Natural makes the connection between "calling" and "called" objects at runtime, and not before, the computer
does not know the type of a function return value it is dealing with at compile time. This is due to the fact that the
object containing the function does not necessarily have to exist [at compile time]. It is for this reason that the
prototype definition was created, so that the datatype can be generated into the generated program at compile time.

It is important to remember that a prototype definition never contains executable code. A prototype definition simply
contains the following information about the function call: the type of the return value or the parameter being passed
back.

Symbolic and Variable Function Call
See the section Function Call for more details about this topic.

Copyright Software AG 20032

<Untitled>Function Definition

Prototype Cast
In order to find the corresponding prototype of a specific function, a prototype is searched for which bears the name
of the function. If this is not the case, it is assumed that the function call is symbolic. In this case, the function
"signature" must be defined by using the keyword "PT=" in the function call.

Recursive Function Call
If a function is to be called recursively, the function prototype must be contained in the function definition, or be
inserted by means of an INCLUDE file.

Example:

Function Object

/* Function definition for calculation of the math. factorial
DEFINE FUNCTION #FACT
 RETURNS (I4) BY VALUE
 DEFINE DATA PARAMETER
 1 #PARA (I4) BY VALUE
 LOCAL
 1 #TEMP (I4)
 END-DEFINE

 /* Prototype definition is necessary
 INCLUDE C#FACT

 /* Program code
 IF #PARA=0
 #FACT := 1
 ELSE
 #TEMP := #PARA - 1
 #FACT := #PARA * #FACT(< #TEMP >)
 END-IF

END-FUNCTION
END

Copycode Object (e.g.: named "C#FACT"):

/* Prototype definition is necessary
DEFINE PROTOTYPE #FACT
 RETURNS (I4)
 DEFINE DATA PARAMETER
 1 #PARA (I4) BY VALUE
 END-DEFINE
END-PROTOTYPE

Program Object:

/* Prototype definition
INCLUDE C#FACT

/* function call
WRITE #FACT(<12>)
END

3Copyright Software AG 2003

Prototype Cast<Untitled>

Behavior of Functions in Statements and Expressions
Function calls can be used directly in statements or expressions, replacing operands. However, this is only allowed in
places where operands cannot be modified.

All function calls are executed according to their syntactical sequence which is analyzed at compile time. The results
of the function calls are saved in internal temporary variables and passed onto the statement or expression.

This fixed sequence makes it possible to allow and execute standard output in functions, without, for example,
unwillingly influencing the output of a statement.

Example:

Program:

/* Natural program using a function call
INCLUDE CPRINT
PRINT ’before’ #PRINT(<>) ’after’
END

Function Object:

/* Natural function definition
/* function returns integer value 10
DEFINE FUNCTION #PRINT
 RETURNS (I4)
 WRITE ’#PRINT’
 #PRINT := 10
END-FUNCTION
END

Copycode (e.g.: "CPRINT"):

DEFINE PROTOTYPE #PRINT END-PROTOTYPE

The following is the result which is then sent to the standard output:

#PRINT
before 10 after

Usage of Functions as a Statement
Functions can also be called as statements independently from statements and expressions. In this case, the return
value-assuming it has been defined- is not taken into account.

If, however, an independent function is declared after an optional operand list, the operand list must be followed by a
semicolon to make it clear that the function call is not a part of the operand list.

Example

Program Object:

Copyright Software AG 20034

<Untitled>Behavior of Functions in Statements and Expressions

/* Natural program using a function call
DEFINE DATA LOCAL
1 #A (I4) INIT <1>
1 #B (I4) INIT <2>
END-DEFINE

INCLUDE CPROTO

WRITE #A #B
#PRINT_ADD(< 2,3 >) /* function call belongs to operand list just in front of it

WRITE ’******’

WRITE #A #B; /* semicolon separates operand list and function call
#PRINT_ADD(< 2,3 >) /* function call doesn’t belong to the operand list
END

Function Object:

/* Natural function definition
DEFINE FUNCTION #PRINT_ADD
 RETURNS (I4) BY VALUE
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE

 #PRINT_ADD := #SUMMAND1 + #SUMMAND2
 PRINT ’#PRINT_ADD =’ #PRINT_ADD
END-FUNCTION
END

Copycode Object (e.g.: named "CPROTO"):

/* Natural copycode containing prototype
DEFINE PROTOTYPE #PRINT_ADD
 RETURNS (I4)
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE
END-PROTOTYPE

5Copyright Software AG 2003

Usage of Functions as a Statement<Untitled>

	Usage of Functions
	Advantage of Function Calls
	Function Definition
	Symbolic and Variable Function Call
	Prototype Cast
	Recursive Function Call
	Behavior of Functions in Statements and Expressions
	Usage of Functions as a Statement

